[1]
|
ATLAS Collaboration. Observation of Higgs boson production in association with a top quark pair at the LHC with the ATLAS detector[J]. Physics Letters B, 2018, doi:10.1016/j. phys-letb.2018.07.035.
|
[2]
|
CMS Collaboration. Observation of tt H production[J]. Physics Review Letters, 2018, 120(23):231801.
|
[3]
|
③ CMS Collaboration. Combined measurements of Higgs boson couplings in proton-proton collisions at √s=13 TeV, CMS-HIG-17-031, CERN-EP-2018-263[J/OL]. (2018-12-17)[2019-01-12]. https://arxiv.org/abs/1809.10733.
|
[4]
|
The IceCube Collaboration, Fermi-LAT, MAGIC, et al. Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A[J]. Science, 2018, 361(6398):eaat1378.
|
[5]
|
MiniBooNE Collaboration. Significant excess of electronlike events in the MiniBooNE short-baseline neutrino experiment[J]. Physics Review Letters, 2018, 121(22), 221801.
|
[6]
|
⑥ XXVⅢ International Conference on Neutrino Physics and Astrophysics[EB/OL]. (2018-06-09)[2019-01-12]. https://www.mpi-hd.mpg.de/nu2018/.
|
[7]
|
Daya Bay Collaboration. Measurement of electron antineutrino oscillation with 1958 days of operation at Daya Bay[J]. Physical Review Letters, 2018, 121(24), 241805.
|
[8]
|
Gariazzo S, Giunti C, Li Y F, et al. Updated global 3+1 analysis of short-baseli neneutrino oscillations[J]. Journal of High Energy Physics, 2017(6):1-38.
|
[9]
|
PandaX Collaboration. Constraining dark matter modelswith a light mediator at the PandaX-Ⅱ experiment[J]. Physical Review Letters, 2018, 121(2):021304.
|
[10]
|
XENON Collaboration. Dark matter search results from a one tonne-year exposure of XENON1T[J]. Physical Review Letters, 2018, 121(11):111302.
|
[11]
|
PandaX Collaboration. Dark matter direct search sensitivity of the PandaX-4T experiment[J]. Science China Physics, Mechanics & Astronomy, 2019, 62(3):031011.
|
[12]
|
DarkSide Collaboration. DarkSide-50532-day dark matter search with low-radioactivity argon[J]. Physical Review D, 2018, 98(10), 102006.
|
[13]
|
CDEX Collaboration. Limits on light weakly interacting massive particles from the first 102.8 kg-day data of the CDEX-10 experiment[J]. Physical Review Letters, 2018, doi:10.1103/PhysRevLett.120.241301.
|
[14]
|
DarkSide Collaboration. Low-mass dark matter searchwith the DarkSide-50 experiment[J]. Physical Review Letters, 2018, 121(8):081307.
|
[15]
|
SuperCDMS Collaboration. Low-mass dark matter search with CDMSlite[J]. Physical Review D, 2018, 97(2), 022002.
|
[16]
|
CRESS Collaboration. A prototype detector for the CRESST-Ⅲ low-mass dark matter search[J]. Nuclear Instruments & Methods in Physics Research, 2018, 845:414-417.
|
[17]
|
SuperCDMS Collaboration. First dark matter constraints from a SuperCDMS single-charge sensitive detector[J]. Physical Review Letters, 2018, 121(5):051301.
|
[18]
|
SENSEI Collaboration. First direct-detection constraints on sub-GeV dark matter from a surface run[J]. Physical Review Letters, 2018, 121(6):061803.
|
[19]
|
ATLAS Collaboration. Search for dark matter and other new phenomena in events with an energetic jet and large missing transverse momentum using the ATLAS detector[J]. Journal of High Energy Physics, 2017, 2018(1):126.
|
[20]
|
CMS Collaboration. Search for dark matter in events with energetic, hadronically decaying top quarks with missing transverse momentum at √s=13 TeV[J]. Journal of High Energy Physics, 2018(6):27.
|
[21]
|
CMS Collaboration. Search for dark matter produced in association with a Higgs boson decaying to γγ or τ+τ-at √s=13 TeV[J]. Journal of High Energy Physics, 2018(9):046.
|
[22]
|
ATLAS Collaboration. Search for dark matter inevents with a hadronically decaying vector boson andmissing transverse mo-mentum in pp collisionsa √s=13 TeV with the ATLAS de-tector[J]. Journal of High Energy Physics, 2018(10):180.
|
[23]
|
ATLAS Collaboration. Search for resonances in themass distribution of jet pairs with one or two jets identified as b-jets in proton-proton collisionsa √s=13 TeV with the ATLAS detector[J]. Physical Review D,2018, 98(3):032016.
|
[24]
|
LHCb Collaboration. Measurement of the lifetime of the doubly charmed baryon Ξcc++[J]. Physical Review Letters, 2018, 121(5):052002.
|
[25]
|
LHCb Collaboration. First observation of the doubly charmed baryon decay Ξcc++→ Ξc+ π+[J]. Physical Review Letters, 2018, 121(16):162002.
|
[26]
|
? The CEPC Study Group. The CEPC conceptual Design Report, VolⅡ:Physics and Detector[J/OL].[2018-12-20]. http://cepc.ihep.ac.cn/CEPC_CDR_Vol2_Physics-Detector.pdf.
|
[27]
|
? The CEPC Study Group. The CEPC conceptual fesignreport, VolI:Accelerator[J/OL].[2018-12-20].http://cepc.ihep.ac.cn/CEPC_CDR_Vol1_Accelerator.pdf.
|
[28]
|
? CERN accelerating science.The FCC conceptual design report[EB/OL]. (2018-12-17)[2019-01-12]. https://fcc-cdr.web.cern.ch/.
|