现代物理知识
 
     首 页  |   期刊介绍  |   编委会  |   投稿指南  |   期刊订阅  |   广告服务  |   留言板 |  联系我们  |   English
现代物理知识  2019, Vol. 31 Issue (2): 55-65    DOI:
物理前沿 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
2018年粒子物理学热点回眸
陈明水1, 李衡讷2, 李玉峰1,3, 吕晓睿3, 阮曼奇1, 周宁4
1. 中国科学院高能物理研究所 100049;
2. 华南师范大学量子物质研究院 510006;
3. 中国科学院大学物理科学学院 100049;
4. 上海交通大学物理与天文学院 200240
 全文: PDF (9378 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 自从文明诞生之日起,人类便一直在探寻这个世界到底是由什么构成的,它又是以怎样的规律运转的。3000多年前的古中国,人们曾经认为世界是由金、木、水、火、土这5种元素组成。公元前6世纪,古希腊哲学家提出了物质是由基本粒子组成的猜测。1802年约翰·道尔顿正式提出所有物质是由原子组成的理论。到了20世纪,随着近代物理学的发展和技术的进步,人们逐渐具备了深入理解原子的能力,了解到原子是由更基础的粒子组成的,并且能够定量地研究其相互作用力。在人类文明史中,物质的基本组成及其相互作用始终是人类认知领域最前沿的问题,而粒子物理学便是当代物理学中研究这个基本问题的分支。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词:   
Abstract
Key words:   
基金资助:

国家重点研发计划项目(2015CB856700,2016YFA0400400,2018YFA0403900,2018YFA0404100,2018YFA0404004);国家自然科学基金项目(11775141,11755001,11835005,11822506,11822507,11835013);中国科学院先导科技专项(XDA10010100);中国科学院大学优秀青年教师科研能力提升项目(Y8540XX192);华南师范大学青年拔尖人才项目(8S0324)

引用本文:   
. 2018年粒子物理学热点回眸[J]. 现代物理知识, 2019, 31(2): 55-65.
. [J]. Modern Physics, 2019, 31(2): 55-65.
 
[1] ATLAS Collaboration. Observation of Higgs boson production in association with a top quark pair at the LHC with the ATLAS detector[J]. Physics Letters B, 2018, doi:10.1016/j. phys-letb.2018.07.035.
[2] CMS Collaboration. Observation of tt H production[J]. Physics Review Letters, 2018, 120(23):231801.
[3] ③ CMS Collaboration. Combined measurements of Higgs boson couplings in proton-proton collisions at √s=13 TeV, CMS-HIG-17-031, CERN-EP-2018-263[J/OL]. (2018-12-17)[2019-01-12]. https://arxiv.org/abs/1809.10733.
[4] The IceCube Collaboration, Fermi-LAT, MAGIC, et al. Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A[J]. Science, 2018, 361(6398):eaat1378.
[5] MiniBooNE Collaboration. Significant excess of electronlike events in the MiniBooNE short-baseline neutrino experiment[J]. Physics Review Letters, 2018, 121(22), 221801.
[6] ⑥ XXVⅢ International Conference on Neutrino Physics and Astrophysics[EB/OL]. (2018-06-09)[2019-01-12]. https://www.mpi-hd.mpg.de/nu2018/.
[7] Daya Bay Collaboration. Measurement of electron antineutrino oscillation with 1958 days of operation at Daya Bay[J]. Physical Review Letters, 2018, 121(24), 241805.
[8] Gariazzo S, Giunti C, Li Y F, et al. Updated global 3+1 analysis of short-baseli neneutrino oscillations[J]. Journal of High Energy Physics, 2017(6):1-38.
[9] PandaX Collaboration. Constraining dark matter modelswith a light mediator at the PandaX-Ⅱ experiment[J]. Physical Review Letters, 2018, 121(2):021304.
[10] XENON Collaboration. Dark matter search results from a one tonne-year exposure of XENON1T[J]. Physical Review Letters, 2018, 121(11):111302.
[11] PandaX Collaboration. Dark matter direct search sensitivity of the PandaX-4T experiment[J]. Science China Physics, Mechanics & Astronomy, 2019, 62(3):031011.
[12] DarkSide Collaboration. DarkSide-50532-day dark matter search with low-radioactivity argon[J]. Physical Review D, 2018, 98(10), 102006.
[13] CDEX Collaboration. Limits on light weakly interacting massive particles from the first 102.8 kg-day data of the CDEX-10 experiment[J]. Physical Review Letters, 2018, doi:10.1103/PhysRevLett.120.241301.
[14] DarkSide Collaboration. Low-mass dark matter searchwith the DarkSide-50 experiment[J]. Physical Review Letters, 2018, 121(8):081307.
[15] SuperCDMS Collaboration. Low-mass dark matter search with CDMSlite[J]. Physical Review D, 2018, 97(2), 022002.
[16] CRESS Collaboration. A prototype detector for the CRESST-Ⅲ low-mass dark matter search[J]. Nuclear Instruments & Methods in Physics Research, 2018, 845:414-417.
[17] SuperCDMS Collaboration. First dark matter constraints from a SuperCDMS single-charge sensitive detector[J]. Physical Review Letters, 2018, 121(5):051301.
[18] SENSEI Collaboration. First direct-detection constraints on sub-GeV dark matter from a surface run[J]. Physical Review Letters, 2018, 121(6):061803.
[19] ATLAS Collaboration. Search for dark matter and other new phenomena in events with an energetic jet and large missing transverse momentum using the ATLAS detector[J]. Journal of High Energy Physics, 2017, 2018(1):126.
[20] CMS Collaboration. Search for dark matter in events with energetic, hadronically decaying top quarks with missing transverse momentum at √s=13 TeV[J]. Journal of High Energy Physics, 2018(6):27.
[21] CMS Collaboration. Search for dark matter produced in association with a Higgs boson decaying to γγ or τ+τ-at √s=13 TeV[J]. Journal of High Energy Physics, 2018(9):046.
[22] ATLAS Collaboration. Search for dark matter inevents with a hadronically decaying vector boson andmissing transverse mo-mentum in pp collisionsa √s=13 TeV with the ATLAS de-tector[J]. Journal of High Energy Physics, 2018(10):180.
[23] ATLAS Collaboration. Search for resonances in themass distribution of jet pairs with one or two jets identified as b-jets in proton-proton collisionsa √s=13 TeV with the ATLAS detector[J]. Physical Review D,2018, 98(3):032016.
[24] LHCb Collaboration. Measurement of the lifetime of the doubly charmed baryon Ξcc++[J]. Physical Review Letters, 2018, 121(5):052002.
[25] LHCb Collaboration. First observation of the doubly charmed baryon decay Ξcc++→ Ξc+ π+[J]. Physical Review Letters, 2018, 121(16):162002.
[26] ? The CEPC Study Group. The CEPC conceptual Design Report, VolⅡ:Physics and Detector[J/OL].[2018-12-20]. http://cepc.ihep.ac.cn/CEPC_CDR_Vol2_Physics-Detector.pdf.
[27] ? The CEPC Study Group. The CEPC conceptual fesignreport, VolI:Accelerator[J/OL].[2018-12-20].http://cepc.ihep.ac.cn/CEPC_CDR_Vol1_Accelerator.pdf.
[28] ? CERN accelerating science.The FCC conceptual design report[EB/OL]. (2018-12-17)[2019-01-12]. https://fcc-cdr.web.cern.ch/.
没有找到本文相关文献
现代物理知识
版权所有 © 2007 《现代物理知识》编辑部
通讯地址:北京918信箱《现代物理知识》编辑部(100049)
电话:010-88236284 传真:010-88236766 E-mail:mp@mail.ihep.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn