现代物理知识
 
     首 页  |   期刊介绍  |   编委会  |   投稿指南  |   期刊订阅  |   广告服务  |   留言板 |  联系我们  |   English
现代物理知识  2020, Vol. 32 Issue (4): 3-13    DOI:
物理前沿 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |  Next Articles  
类星体宇宙学距离:光学干涉测量
王建民1, 宋盛雨央1, 上官晋沂2
1. 中国科学院高能物理研究所;
2. 德国马克斯·普朗克地外物理研究所
 全文: PDF (12928 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 灿烂的星空总能唤起人们各种遐想:浩瀚的宇宙到底有多浩渺?闪烁繁星如何镶嵌在这宇宙之中又如何运动?宇宙的几何形状如何?几千年来,从古老的最高智慧到现代最精密的仪器和设备都始终为回答这些带有明显哲学性质的自然科学命题付出着无限的热情和努力:正当快要接近答案时,它却又戏剧般地飘然而去,其中充满了从渴望、绝望到兴奋的螺旋式循环。本地测量与从微波背景得到宇宙膨胀率是两条完全不同的观测宇宙学之路。在这个令人激动的“精确宇宙学时代”,它们没有殊途同归,却乍现“哈勃常数危机”的严峻挑战。这是黎明前的黑暗吗?这一危机虽令人不安,却又是一种强大的动力。光学干涉技术提供了利用类星体高精度测量宇宙学距离的几何方法,可以有效将延伸至很高红移的宇宙之中。人们期待着利用这一新工具揭示宇宙动力学背后的基本物理规律。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词:   
Abstract
Key words:   
引用本文:   
. 类星体宇宙学距离:光学干涉测量[J]. 现代物理知识, 2020, 32(4): 3-13.
. [J]. Modern Physics, 2020, 32(4): 3-13.
 
[1] ① Hubble, E.1929, PNAS, 15, 168, A relation between distance and radial velocity among extra-galactic nebulae
[2] Hubble, E. & Humason, M.L.1931, ApJ, 74, 43, The velocity-distance relation among extra-galactic nebulae
[3] ③ Freedman, W.2017, Nature Astronomy, 1, 169,Cosmology at a crossroads
[4] Riess, A. et al.1998, ApJ, 116, 1009, Observational evidence from supernovae for an accelerating Universe and a cosmological constant
[5] Perlmutter, S. et al. 1999, ApJ, 517, 565, Measurements of Ω and Λ from 42 high-redshift supernovae
[6] Astier, P. et al. 2014, A&A 572, A80, Extending the supemnova Hubble diagram to z~1.5 with the Euclid space mission
[7] Riess, A., 2019, Nature Physics Review, 2, 10, The expansion of the Universe is faster than expected
[8] Schmidt, M.1963, Nature, 197, 1040, 3C 273:A star-like object with large red-shift
[9] 何香涛, 自然杂志, 2014, 36卷, 3期, 218-224页:宇宙中最神秘的天体——类星体(一):发现类星体
[10] Kellerman, K. I. 1993, Nature, 361, 134, The cosmological deceleration parameter estimated from the angular-size/redshift relation for compact radio sources
[11] Baldwin,J.A. et al. 1978, Nature, 273, 431, Relative quasar luminosities determined from emission line strenghts.
[12] Wang, J.-M., et al. 2013, Phys. Rev. Lett. 110, 081301, Super-Eddington accreting massive black holes as long-lived cosmological standards.
[13] Lu, K-X. et al.2017, ApJ, 827, 118, Reverberation Mapping of the Broad-line Region in NGC 5548:Evidence for Radiation Pressure?
[14] ? Peterson,B. 1993, PASP, 105, 247, Reverberation mapping of active galactic nuclei
[15] ? GRAVITY Collaboration, et al.2017, A&A, 602, A94, First light for GRAVITY:Phase referencing optical interferometry for the Very Large Telescope Interferometer
[16] GRAVITY Collaboration, 2019, A&A, 625, L10, A geometric distance measurement to the Galactic center black hole with 0.3% uncertainty
[17] ? GRAVITY Collaboration, et al.2018, A&A, 615, L15, Detection of the gravitational redshift in the orbit of the star S2 near the Galactic centre massive black hole
[18] ? Gravity Collaboration, et al. 2020, A&A, 636, L5, Detection of the Schwarzschild precession in the orbit of the star S2 near the Galactic centre massive black hole
[19] ? GRAVITY Collaboration, et al. 2018, A&A, 618, L10, Detection of orbital motions near the last stable circular orbit of the massive black hole Sgr A*
[20] ? GRAVITY Collaboration, et al. 2020, A&A, 635, A143, Modeling the orbital motion of Sgr A*'s near-infrared flares
[21] ? GRAVITY Collaboration, et al. 2019, A&A, 623, L11, First direct detection of an exoplanet by optical interferometry. Astrometry and K-band spectroscopy of HR 8799e
[22] ? GRAVITY Collaboration, et al. 2020, A&A, 633, A110, Peering into the formation history of β Pictoris b with VLTI/GR AVITY longbaseline interferometry
[23] GRAVITY Collaboration, et al. 2020, A&A, 634, A1, An image of the dust sublimation region in the nucleus of NGC 1068
[24] ? GRAVITY Collaboration, et al. 2020, A&A, 635, A92, The resolved size and structure of hot dust in the immediate vicinity of AGN
[25] ? https://zenodo.org/record/3356216#.XohNpi277zI
[26] Zhang, Z.-X. et al. 2019, ApJ, 876, 49, Kinematics of the broadline region of 3C 273 from a 10 yr reverberation mapping campaign.
[27] ? GRAVITY Collaboration, et al. 2018, Nature, 563, 657, Spatially resolved rotation of the broad-line region of a quasar at sub-parsec scale
[28] Wang, J.-M., et al. 2020, Nature Astronomy, 4, 517, A parallax distance to 3C 273 through spectroastrometry and reverberation mapping
[29] Jee, I., Suyu, S. H., Komatsu, E.2019, Science, 365, 1134, A measurement of the Hubble constant from angular diameter distances to two gravitational lenses.
[30] Wong, K.C. et al, 2020, MNRAS, in Press
[31] The LIGO Scientific Collaboration, et al., 2017, Nature, 551, 85, A gravitational-wave standard siren measurement of the Hubble constant.
没有找到本文相关文献
现代物理知识
版权所有 © 2007 《现代物理知识》编辑部
通讯地址:北京918信箱《现代物理知识》编辑部(100049)
电话:010-88236284 传真:010-88236766 E-mail:mp@mail.ihep.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn