$author.xingMing_EN. [J]. Modern Physics, 2020, 32(5): 10-16.
[1]
Klebesadel R W, Strong I B, Olson R A. Observations of gammaray bursts of cosmic origin. Astrophys J, 1973, 182:L85
[2]
Kouveliotou C, Meegan C A, Fishman G J, et al. Identifification of two classes of gamma-ray bursts. Astrophys J, 1993, 413:L101
[3]
Galama T J, Vreeswijk P M, van Paradijs J, et al. An unusual supernova in the error box of the γ-ray burst of 25 April 1998. Nature, 1998, 395:670-672
[4]
Abbott B P, Abbott R, Abbott T D, et al. GW170817:Observation of gravitational waves from a binary neutron star inspiral. Phys Rev Lett, 2017, 119:161101
[5]
Abbott B P, Abbott R, Abbott T D, et al. Gravitational waves and gamma-rays from a binary neutron star merger:GW170817 and GRB 170817A. Astrophys J, 2017, 848:L13
[6]
Schutz B F. Determining the Hubble constant from gravitational wave observations. Nature, 1986, 323:310-311
[7]
Lattimer J M, Schramm D N. Black-hole-neutron-star collisions. Astrophys J, 1974, 192:L145
[8]
Rosswog S, Liebendorfer M, Thielemann F K, et al. Mass ejection in neutron star mergers. Astron Astrophys, 1999, 341:499-526
[9]
Li L X, Paczynski B. Transient events from neutron star mergers. Astrophys J, 1998, 507:L59-L62
[10]
Metzger B D, Martínez-Pinedo G, Darbha S, et al. Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r-process nuclei. Mon Not R Astron Soc, 2010, 406:2650-2662
[11]
Rees M J, Meszaros P. Unsteady outflflow models for cosmological gamma-ray bursts. Astrophys J, 1994, 430:L93
[12]
Meszaros P, Rees M J. Optical and long-wavelength afterglow from gamma-ray bursts. Astrophys J, 1997, 476:232-237
[13]
Sari R, Piran T, Narayan R. Spectra and light curves of gamma-ray burst afterglows. Astrophys J, 1998, 497:L17-L20
[14]
Kathirgamaraju A, Barniol Duran R, Giannios D. Offff-axis short GRBs from structured jets as counterparts to GW events. Mon Not R Astron Soc-Lett, 2018, 473:L121-L125
[15]
Lamb G P, Kobayashi S. Electromagnetic counterparts to structured jets from gravitational wave detected mergers. Mon Not R Astron Soc, 2017, 472:4953-4964
[16]
Dai Z G, Lu T. γ-ray bursts and afterglows from rotating strange stars and neutron stars. Phys Rev Lett, 1998, 81:4301-4304
[17]
Yu Y W, Cheng K S, Cao X F. The role of newly born magnetars in gamma-ray burst X-ray afterglow emission:Energy injection and internal emission. Astrophys J, 2010, 715:477-484
[18]
Yu Y W, Zhang B, Gao H. Bright "merger-nova" from the remnant of a neutron star binary merger:A signature of a newly born, massive, millisecond magnetar. Astrophys J, 2013, 776:L40
[19]
Mereghetti S. The strongest cosmic magnets:soft gamma-ray repeaters and anomalous X-ray pulsars, The Astronomy and Astrophysics Review, 2008, 15, 225
[20]
Turolla, R. Zane, S. Watts, A. L. Magnetars:the physics behind observations. A review, Reports on Progress in Physics, 2015, 78, 116901
[21]
The CHIME/FRB Collaboration, A bright millisecond-duration radio burst from a Galactic magnetar eprint, 2020, arXiv:2005.10324
[22]
Li, C. K.; Lin, L.; Xiong, S. L. et al., Identification of a non-thermal X-ray burst with the Galactic magnetar SGR 1935+2154 and a fast radio burst with Insight-HXMT, 2020, eprint arXiv:2005.11071
[23]
Lorimer, D. R., Bailes, M., McLaughlin, M. A., Narkevic, D. J., & Crawford, F. A Bright Millisecond Radio Burst of Extragalactic Origin, Science, 2007, 318, 777
[24]
Tendulkar, S. P.; Bassa, C. G.; Cordes, J. M. et al, The Host Galaxy and Redshift of the Repeating Fast Radio Burst FRB 121102, Astrophys J, 2017, 834:L7
[25]
Platts E., Weltman A., Walters A., et al. A living theory catalogue for fast radio bursts, Physics Reports, 2019, 821, 1