现代物理知识
 
     首 页  |   期刊介绍  |   编委会  |   投稿指南  |   期刊订阅  |   广告服务  |   留言板 |  联系我们  |   English
现代物理知识  2023, Vol. 35 Issue (1): 3-7    DOI:
W玻色子质量精确测量专题 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |  Next Articles  
挑战粒子物理标准模型:“超重”的W规范玻色子
卢致廷, 武雷, 吴永成
南京师范大学 210023
 全文: PDF (3338 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 提到W玻色子的历史,必须简要地回顾弱相互作用的发展过程。弱相互作用首先是从核β衰变(np+e-+Ve)的观测中推断出来。在1935年,恩里科·费米(Enrico Fermi)率先提出了第一个弱相互作用理论,其相互作用的形式与电磁相互作用的形式类似,并以所谓的费米常数(GF)为此相互作用的特征耦合。通过比较电磁与弱相互作用的大小,弱相互作用的强度约为电磁作用的万分之一,这也是"弱相互作用"名称的由来。费米的理论在当时成功地描述了低能弱相互作用,因此被物理学家们广泛地使用。然而此理论在高能时会破坏么正性,只能被视为低能时的有效理论。完整的弱相互作用理论要延迟到20世纪60年代,通过格拉肖(Sheldon L.Glashow)、温伯格(Steven Weinberg)和萨拉姆(Abdus Salam)提出的电弱SU (2)×U (1)规范理论,将弱相互作用和电磁作用统一起来[1]。该理论假设弱相互作用是通过重的W和Z玻色子所传递,并预测它们的质量约为100 GeV,这与传递电磁作用的无质量光子产生强烈的对比。在1983年发现质量为81±5 GeV的W玻色子[2],是该电弱理论巨大成功的重要证据之一,将在下节做介绍。此后电弱SU (2)×U (1)规范理论被多数人称作粒子物理的标准模型,并且通过不同的实验反复地被检验。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词:   
Abstract
Key words:   
引用本文:   
. 挑战粒子物理标准模型:“超重”的W规范玻色子[J]. 现代物理知识, 2023, 35(1): 3-7.
. [J]. Modern Physics, 2023, 35(1): 3-7.
 
[1] High-precision measurement of the W boson mass with the CDF Ⅱ detector, T. Aaltonen et al.[CDF], Science 376, no.6589, 170-176(2022).
[2] The W boson Mass and Muon g-2:Hadronic Uncertainties or New Physics? Peter Athron, Andrew Fowlie, Chih-Ting Lu, Lei Wu, Yongcheng Wu, and Bin Zhu, Nature Commun. 14(2023) 659.
[3] S. Glashow, Nucl. Phys. 22, 579(1961); A. Salam and J. C. Ward, Phys. Lett. 13, 168(1964); S. Weinberg, Phys. Rev. Lett. 19, 1264(1967).
[4] UA1 Collaboration. Phys. Lett. B122:103(1983); UA2 Collaboration. Phys. Lett. B122:476(1983).
[5] Future Circular Colliders succeeding the LHC,M. Benedikt, A. Blondel, P. Janot, M. Mangano and F. Zimmermann, Nature Phys. 16, no.4, 402-407(2020).
[6] Implications of LHC search results on the W boson mass prediction in the MSSM,S. Heinemeyer, W. Hollik, G. Weiglein and L. Zeune, JHEP 12, 084(2013).
[7] First Run II Measurement of the W Boson Mass,T. Aaltonen et al.[CDF], Phys. Rev. D 77, 112001(2008).
[8] Measurement of the W Boson Mass at the Tevatron, V. Kotwal and J. Stark, Ann. Rev. Nucl. Part. Sci. 58, 147-175(2008).
[9] Updated Status of the Global Electroweak Fit and Constraints on New Physics,S. Heinemeyer, W. Hollik, G. Weiglein and L. Zeune, JHEP 12, 084(2013).
[10] Precise prediction for the W boson mass in the MRSSM,P. Diessner and G. Weiglein, JHEP 07, 011(2019).
[11] Importance of Z-Z ' Mixing in bsl+l- and the W mass, M. Alguer'o, A. Crivellin, C.A. Manzari and J. Matias,[arXiv:2201.08170[hep-ph]].
[12] M. E. Peskin and T. Takeuchi, Phys. Rev. Lett. 65, 964(1990); M. Golden and L. Ran-dall, Nucl. Phys. B 361, 3(1990); B. Holdom and J. Terning, Phys. Lett. B 247, 88(1990); M. E. Peskin and T. Takeuchi, Phys. Rev. D 46, 381(1992); G. Altarelli and R. Barbieri, Phys. Lett. B 253, 161(1991); G. Altarelli, R. Barbieri and S. Jadach, Nucl. Phys. B 369, 3(1992)[Erratum-ibid. B 376, 444(1992)].
[13] Precision measurements of the W- boson mass, D. A. Glenzinski and U. Heintz, Ann. Rev. Nucl. Part. Sci. 50, 207-248(2000).
[14] UA2 Collaboration. Phys. Lett. B 241:150(1990).
[15] Combination of CDF and D0 W-Boson Mass Measurements,T. A. Aaltonen et al.[CDF and D0], Phys. Rev. D 88, no.5, 052018(2013).
[16] Electroweak Measurements in Electron-Positron Collisions at WBoson- Pair Energies at LEP,S. Schael et al.[ALEPH, DELPHI, L3, OPAL and LEP Electroweak], Phys. Rept. 532, 119-244(2013).
[17] Mass mixing effect and oblique radiative corrections in extended SU(2) (R) x SU(2) (L) x U(1) effective theory, Y. Zhang, Adv. High Energy Phys. 2012, 761953(2012).
[18] Electroweak Precision Fit and New Physics in light of W Boson Mass, Chih-Ting Lu, Lei Wu, Yongcheng Wu, and Bin Zhu, Phys. Rev.D 106(2022) 3, 035034.
[19] Measurement of the W-boson mass in pp collisions at √S=7 TeV with the ATLAS detector, M. Aaboud et al.[ATLAS], Eur. Phys. J. C 78, no.2, 110(2018)[erratum:Eur. Phys. J. C 78, no.11, 898(2018)].
[20] Measurement of the W boson mass,R. Aaij et al.[LHCb], JHEP 01, 036(2022).
[21] Impact of the recent measurements of the top-quark and W-boson masses on electroweak precision fits, J. de Blas, M. Pierini, L. Reina and L. Silvestrini, Phys.Rev.Lett. 129(2022) 27, 271801.
[22] High-precision measurement of the W boson mass with the CDF Ⅱ detector, T. Aaltonen et al.[CDF], Science 376, no.6589, 170-176(2022).
[23] The W boson Mass and Muon g-2:Hadronic Uncertainties or New Physics? Peter Athron, Andrew Fowlie, Chih-Ting Lu, Lei Wu, Yongcheng Wu, and Bin Zhu, Nature Commun. 14(2023) 659.
[24] Future Circular Colliders succeeding the LHC,M. Benedikt, A. Blondel, P. Janot, M. Mangano and F. Zimmermann, Nature Phys. 16, no.4, 402-407(2020).
[25] Implications of LHC search results on the W boson mass prediction in the MSSM,S. Heinemeyer, W. Hollik, G. Weiglein and L. Zeune, JHEP 12, 084(2013).
[26] Updated Status of the Global Electroweak Fit and Constraints on New Physics,S. Heinemeyer, W. Hollik, G. Weiglein and L. Zeune, JHEP 12, 084(2013).
[27] Precise prediction for the W boson mass in the MRSSM,P. Diessner and G. Weiglein, JHEP 07, 011(2019).
[28] Importance of Z-Z ' Mixing in bsl+l- and the W mass, M. Alguer'o, A. Crivellin, C.A. Manzari and J. Matias,[arXiv:2201.08170[hep-ph]].
[29] Mass mixing effect and oblique radiative corrections in extended SU(2) (R) x SU(2) (L) x U(1) effective theory, Y. Zhang, Adv. High Energy Phys. 2012, 761953(2012).
[30] Electroweak Precision Fit and New Physics in light of W Boson Mass, Chih-Ting Lu, Lei Wu, Yongcheng Wu, and Bin Zhu, Phys. Rev.D 106(2022) 3, 035034.
[31] Impact of the recent measurements of the top-quark and W-boson masses on electroweak precision fits, J. de Blas, M. Pierini, L. Reina and L. Silvestrini, Phys.Rev.Lett. 129(2022) 27, 271801.
没有找到本文相关文献
    PDF Preview
    
现代物理知识
版权所有 © 2007 《现代物理知识》编辑部
通讯地址:北京918信箱《现代物理知识》编辑部(100049)
电话:010-88236284 传真:010-88236766 E-mail:mp@mail.ihep.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn