Cite this article: |
. [J]. Modern Physics, 2019, 31(5): 27-45.
|
[1]
|
Guo, X. G.; Fang, G. Z.; Li, G. et al. Direct, Nonoxidative Conversion of Methane to Ethylene, Aromatics,and Hydrogen[J]. Science, 2014, 344:616-619.
|
[2]
|
Lin, L. L.; Zhou, W.; Gao, R. et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts[J]. Nature, 2017, 544:80-83.
|
[3]
|
Luo, M. C.; Zhao, Z. L.; Zhang, Y. L. et al. PdMo bimetallene for oxygen reduction catalysis[J]. Nature, 2019, 574(7776):81-85.
|
[4]
|
Qiao, B. T.; Wang, A. Q.; Yang, X. F. et al. Single-atom catalysis of CO oxidation using Pt/FeOx[J]. Nat.Chem.,2011,3(8):634-641.
|
[5]
|
Yang, X. F.; Wang, A. Q.; Qiao, B. T. et al. Single-Atom Catalysts:A New Frontier in Heterogeneous Catalysis[J]. Acc.Chem.Res., 2013, 46(8):1740-1748.
|
[6]
|
Lin, J.; Wang, A. Q.; Qiao, B. T. et al. Structural Insight into Enantioselective Inversion of an Alcohol Remarkable performance of Ir/FeOx single-atom catalyst in water gas shift reaction[J]. J. Am. Chem. Soc.,2013,135(41):15314-15317.
|
[7]
|
Wei, H. S.; Liu, X. Y.; Wang, A. Q. et al. FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes[J]. Nat.Commun., 2014, 5:5634.
|
[8]
|
Pei, G. X.; Liu, X. Y.; Wang, A. Q. et al. Ag Alloyed Pd Single-Atom Catalysts for Efficient Selective Hydrogenation of Acetylene to Ethylene in Excess Ethylene[J]. ACS Catal., 2015, 5(6):3717-3725.
|
[9]
|
Liang. R.; Li, T. B.; Matsumura, D. et al. Hydroformylation of Olefins by a Rhodium Single-Atom Catalyst with Activity Comparable to RhCl(PPh3)3[J]. Angew. Chem. Int.Ed., 2016, 55:16054-16058.
|
[10]
|
Liu, W. G.; Zhang, L. L.; Yan, W. S. et al. Single-atom dispersed Co-N-C catalyst:structure identification and performance for hydrogenative coupling of nitroarenes[J]. Chem.Sci., 2016, 7:5758-5764.
|
[11]
|
Liu, W. G.; Chen, Y. J.; Qi, H. F. et al. A Durable Nickel Single-Atom Catalyst for Hydrogenation Reactions and Cellulose Valorization under Harsh Conditions[J]. Angew. Chem., Int. Ed. 2018, 57(24):7071-7075.
|
[12]
|
Hu, Q. Y.; Kim, D. Y.; Yang, W. G. et al. FeO2 and FeOOH under deep lower-mantle conditions and Earth's oxygen-hydrogen cycles[J]. Nature, 2016, 534(7606):241-244.
|
[13]
|
Fan, J. X.; Wang, Y. J.; Liu, C. et al. Effect of iron oxide reductive dissolution on the transformation andimmobilization of arsenic in soils:New insights from X-rayphotoelectron and X-ray absorption spectroscopy[J]. Journal of Hazardous Materials 2014, 279:212-219.
|
[14]
|
Sheng, G. D.; Tang, Y. N.; Linghu, W. S. et al. Enhanced immobilization of ReO4- by nanoscale zerovalent ironsupported on layered double hydroxide via an advanced XAFSapproach:Implications for TcO4- sequestration[J]. Applied Catalysis B:Environmental, 2016, 192:268-276.
|
[15]
|
Sheng, G. D.; Yang, P. J.; Tang, Y. N. et al. New insights into the primary roles of diatomite in the enhanced sequestration of UO22+ by zerovalent iron nanoparticles:An advanced approach utilizing XPS and EXAFS[J]. Applied Catalysis B:Environmental, 2016, 193:188-197.
|
[16]
|
Sheng, G. D.; Alsaedi, A.; Shammakh, W. et al. Enhanced sequestration of selenite in water by nanoscale zero valent iron immobilization on carbon nanotubes by a combined batch, XPS and XAFS investigation[J]. Carbon, 2016, 99:123-130.
|
[17]
|
Wang, S. S.; Lv, J. T.; Ma, J. Y. et al. Cellular Internalization and Intracellular Biotransformation of Silver Nanoparticles in Chlamydomonas Reinhardtii[J]. Nanotoxicology, 2016, 10(8):1129-1135.
|
[18]
|
Zhang. C.; Hu, W. B.; Ni, D. L. et al. A Polyoxometalate Cluster Paradigm with Self-Adaptive Electronic Structure for Acidity/Reducibility-Specific Photothermal Conversion[J]. J. Am. Chem. Soc. 2016, 137(26):8156-8164.
|
[19]
|
Zhou, J. Y.; Wang, Y.; Xu, G. C. et al. Structural Insight into Enantioselective Inversion of an Alcohol Dehydrogenase Reveals a "Polar Gate" in Stereorecognition of Diaryl Ketones[J]. J. Am. Chem. Soc. 2018, 140(39):265-270.
|
[20]
|
Dong. H.; Sun, L. D.; Wang, Y. F. et al. Efficient Tailoring of Upconversion Selectivity by Engineering Local Structure of Lanthanides in NaxREF3+x Nanocrystals[J]. J. Am. Chem. Soc. 2015, 137(20):6569-6576.
|
[21]
|
Wang. X. Y.; Huang, K. K.; Yuan, L. et al. Activation of Surface Oxygen Sites in a Cobalt-Based Perovskite Model Catalyst for CO Oxidation[J]. J. Phys. Chem. Lett. 2018, 9:4146-4154.
|
[22]
|
Cong. Y. G.; Geng, Z. B.; Sun, Y. et al. Cation Segregation of ASite Deficiency Perovskite La0.85FeO3-δ Nanoparticles toward HighPerformance Cathode Catalysts for Rechargeable Li-O2 Battery[J]. ACS Appl. Mater. Interfaces, 2018, 10(30):25465-25472.
|
[23]
|
Sun. Y. H.; Qiu, L.; Tang, L. P. et al. Flexible n-Type High-Performance Thermoelectric Thin Films of Poly(nickel-ethylenetetrathiolate) Prepared by an Electrochemical Method[J]. Adv. Mater. 2016, 28:3351-3358.
|
|
|