Cite this article: |
. [J]. Modern Physics, 2022, 34(1): 44-50.
|
[1]
|
① Alberts, B., A grand challenge in biology. 2011, American Association for the Advancement of Science.
|
[2]
|
Henzler-Wildman, K.A., et al., A hierarchy of timescales in protein dynamics is linked to enzyme catalysis. Nature, 2007. 450(7171):p. 913-916.
|
[3]
|
Frauenfelder, H., S.G. Sligar, and P.G. Wolynes, The energy landscapes and motions of proteins. Science, 1991. 254(5038):p. 1598-1603.
|
[4]
|
Ball, P., Water as an active constituent in cell biology. Chemical reviews, 2008. 108(1):p. 74-108.
|
[5]
|
韩晶晶 and 储祥蔷, 利用中子散射探索生命世界中的物理奥秘.物理, 2019. 48(12):p. 780-789.
|
[6]
|
Gabel, F., et al., Protein dynamics studied by neutron scattering. Quarterly reviews of biophysics, 2002. 35(4):p. 327.
|
[7]
|
de Souza, N.R., A. Klapproth, and G.N. Iles, EMU:High-Resolution Backscattering Spectrometer at ANSTO. Neutron News, 2016. 27(2):p. 20-21.
|
[8]
|
Birr, M., A. Heidemann, and B. Alefeld, A neutron crystal spectrometer with extremely high energy resolution. Nuclear Instruments and Methods, 1971. 95(3):p. 435-439.
|
[9]
|
Grimaldo, M., et al., Dynamics of proteins in solution. Quarterly Reviews of Biophysics, 2019. 52.
|
[10]
|
Frick, B., et al., The new backscattering spectrometer IN16 at the ILL. Physica B:Condensed Matter, 1997. 234:p. 1177-1179.
|
[11]
|
Meyer, A., et al., The high-flux backscattering spectrometer at the NIST Center for Neutron Research. Review of Scientific Instruments, 2003. 74(5):p. 2759-2777.
|
[12]
|
Carlile, C. and M.A. Adams, The design of the IRIS inelastic neutron spectrometer and improvements to its analysers. Physica B:Condensed Matter, 1992. 182(4):p. 431-440.
|
[13]
|
? IRIS User Guide, https://www.isis.stfc.ac.uk/Pages/Iris-documents.aspx.
|
[14]
|
Volino, F. and A. Dianoux, Neutron incoherent scattering law for diffusion in a potential of spherical symmetry:general formalism and application to diffusion inside a sphere. Molecular Physics, 1980. 41(2):p. 271-279.
|
[15]
|
Jansson, H., et al., Dynamics of a protein and its surrounding environment:A quasielastic neutron scattering study of myoglobin in water and glycerol mixtures. The Journal of chemical physics, 2009. 130(20):p. 05B613.
|
[16]
|
Monkenbusch, M., et al., Fast internal dynamics in alcohol dehydrogenase. The journal of chemical physics, 2015. 143(7):p. 08B607_1.
|
[17]
|
Lal, J., et al., Neutron spin-echo studies of hemoglobin and myoglobin:multiscale internal dynamics. Journal of molecular biology, 2010. 397(2):p. 423-435.
|
[18]
|
Lagi, M., P. Baglioni, and S.-H. Chen, Logarithmic decay in singleparticle relaxation of hydrated lysozyme powder. Physical review letters, 2009. 103(10):p. 108102.
|
[19]
|
Chu, X.-q., et al., Temperature dependence of logarithmic-like relaxational dynamics of hydrated tRNA. The journal of physical chemistry letters, 2013. 4(6):p. 936-942.
|
[20]
|
Dhindsa, G.K., M. Tyagi, and X.-q. Chu, Temperature-dependent dynamics of dry and hydrated β-casein studied by quasielastic neutron scattering. The Journal of Physical Chemistry B, 2014. 118(37):p. 10821-10829.
|
[21]
|
Shrestha, U.R., et al., Effects of pressure on the dynamics of an oligomeric protein from deep-sea hyperthermophile. Proceedings of the National Academy of Sciences, 2015. 112(45):p. 13886-13891.
|
[22]
|
Shrestha, U.R., et al., Quasi-elastic neutron scattering reveals ligand-induced protein dynamics of a G-protein-coupled receptor. The journal of physical chemistry letters, 2016. 7(20):p. 4130-4136.
|
[23]
|
Chu, X.-q., et al., Dynamic behavior of oligomeric inorganic pyrophosphatase explored by quasielastic neutron scattering. The Journal of Physical Chemistry B, 2012. 116(33):p. 9917-9921.
|
[24]
|
Radivojac, P., et al., Protein flexibility and intrinsic disorder. Protein Science, 2004. 13(1):p. 71-80.
|
[25]
|
Zaccai, G., How soft is a protein? A protein dynamics force constant measured by neutron scattering. Science, 2000. 288(5471):p. 1604-1607.
|
[26]
|
Schirò, G., et al., Translational diffusion of hydration water correlates with functional motions in folded and intrinsically disordered proteins. Nature communications, 2015. 6(1):p. 1-8.
|
[27]
|
Fujiwara, S., et al., Dynamic properties of human α-synuclein related to propensity to amyloid fibril formation. Journal of molecular biology, 2019. 431(17):p. 3229-3245.
|
[28]
|
Dhindsa, G.K., et al., Enhanced dynamics of hydrated trna on nanodiamond surfaces:A combined neutron scattering and md simulation study. The Journal of Physical Chemistry B, 2016. 120(38):p. 10059-10068.
|
|
|